Wednesday, August 28, 2019

PRINSIP

Prinsip pesawat sederhana

Pesawat Sederhana Pada Kerja Otot dan Rangka Manusia

Pada tubuh manusia berlaku prinsip-prinsip kerja pesawat sederhana. Prinsip-prinsip tersebut kemudian ditiru dan dimodifikasi untuk mendesain berbagai macam peralatan yang memudahkan kerja manusia. Ketika kerja dipermudah, artinya energi yang dikeluarkan lebih sedikit. Energi dan kerja (usaha) dinyatakan dalam satuan Joule (Newton meter). Kerja atau usaha didefinisikan sebagai hasil kali antara gaya dengan jarak, sehingga dapat dituliskan dengan rumus berikut.

W = F.S
di mana: W = Usaha (Joule)
F = Gaya (Newton)
S = Jarak (Meter)

Usaha dapat bernilai nol apabila gaya yang dikerjakan pada benda tidak mengakibatkan perpindahan tempat. Besarnya usaha yang dilakukan per satuan waktu disebut dengan daya atau power (P). Daya secara matematis dituliskan sebagai berikut.

di mana: P = Daya (Watt)
W = Usaha (Joule)
t = Waktu (Sekon)

Pada saat manusia melakukan aktivitas, manusia selalu berupaya untuk melakukannya dengan usaha dan daya yang sekecil-kecilnya. Oleh karena itu, manusia menggunakan pesawat sederhana untuk membantu melakukan aktivitasnya.

RODA BERGERIGI

RODA BERGERIGI ATAU RODA BERPOROS

Roda dan Poros adalah pesawat sederhana yang mengandung dua roda dengan ukuran berbeda yang berputar bersamaan. Gaya kuasa biasanya dikerahkan kepada roda yang besar, atau roda. Roda yang lebih kecil, yang disebut poros, mengerjakan gaya beban. 
 
Gir adalah roda bergerigi yang termasuk jenis pesawat sederhana. Roda bergerigi adalah pesawat sederhana yang memiliki sisi bergerigi. Roda bergerigi besar menghasilkan gaya yang lebih besar sehingga kuasa yang diperlukan lebih kecil. Tetapi, kondisi ini harus diimbangi dengan kecepatan putar yang lambat. Sebaliknya, roda bergerigi kecil akan memberikan kecepatan putar yang tinggi, tetapi gaya yang dihasilkan relatif kecil sehingga harus diimbangi dengan kuasa yang besar. Jika kamu pernah memperhatikan mesin pada jam, maka kamu telah melihat penerapan dan pemanfaatan roda bergerigi yang ternyata sangat dekat denganmu dalam kehidupan sehari-hari.
Selain itu, roda bergerigi juga dapat kamu temukan pada sepeda yang biasa kamu gunakan untuk bermain atau sebagai alat transportasi ke sekolahmu. Berikut beberapa gambar contoh pemanfaatan roda dan poros dalam kehidupan sehari-hari.

BIDANG MIRING


Pada artikel Fisika kelas VIII kali ini, kamu akan mempelajari tentang prinsip bidang miring,  penerapan, dan manfaatnya dalam kehidupan sehari-hari.
--
Siapa nih di antara kamu yang suka jalan-jalan ke puncak? Pernah nggak sih kamu memperhatikan saat akan ke puncak, mobil atau bus yang kamu tumpangi berjalan mengikuti lintasan yang meliuk-liuk mengitari pegunungan.
prinsip bidang miring
Rute jalan di pegunungan meliuk-liuk seperti ular (sumber: kaskus.co.id)
Ternyata, lintasan yang meliuk-liuk itu pada dasarnya mengikuti prinsip bidang miring, lhoHmm, kenapa harus begitu ya? Kenapa nggak dibuat lurus saja biar cepat sampai? Penasaran? Jawabannya ada pada artikel di bawah ini, nih. Langsung saja yuk kita simak!
prinsip bidang miring
Apa sih bidang miring itu? Jika di antara kamu ada yang menjawab “bidang yang miring”, itu nggak salah kok, cuma kurang lengkap saja. Nah, kalau definisi lengkapnya, bidang miring adalah suatu lintasan yang memiliki kemiringan tertentu dan membentuk sudut terhadap permukaan mendatarnya.
prinsip bidang miring
Bidang miring juga termasuk salah satu jenis pesawat sederhana, lhoHayo, ada yang masih ingat apa itu pesawat sederhana?
prinsip bidang miring
Pada bidang miring, kita bisa menghitung gaya yang kita keluarkan dengan menggunakan rumus berikut ini:
 
prinsip bidang miring
Berdasarkan rumus di atas, kita jadi bisa tahu nih kalau gaya akan berbanding lurus dengan tinggi bidang miring. Semakin landai bidang miring tersebut, maka gaya yang dikerjakan akan semakin kecil. Sebaliknya, semakin curam bidang miring tersebut, maka gaya yang dikerjakan akan semakin besar.
prinsip bidang miring
Selain kita bisa menghitung gaya dengan rumus bidang miring, kita juga bisa mengetahui keuntungan mekanisnya, Squad. Keuntungan mekanis ini adalah sebuah angka yang menunjukkan berapa kali pesawat sederhana dapat menggandakan gaya. Caranya, dapat kamu lihat pada rumus di bawah ini!
prinsip bidang miring

Katrol

Pada artikel IPA kelas VIII kali ini, kamu akan mengetahui tentang katrol dan jenis-jenis katrol.
 
--

Squad, jika kamu mendengar kata katrol, apakah yang ada di benakmu adalah sebuah roda yang dililit oleh seutas tali dan biasa digunakan untuk membantu mengambil air dari sumur? Jika iya, maka tanpa disadari kamu sudah tahu lho apa itu katrol. Setidaknya, kamu nggak terlalu asing nih dengan alat yang satu ini.
Selain tuas dan bidang miring, katrol juga termasuk salah satu jenis pesawat sederhana, lho. Berdasarkan definisinya, katrol adalah pesawat sederhana yang berbentuk roda dan bergerak berputar pada porosnya. Katrol ini biasanya digunakan untuk menarik atau mengangkat benda yang berukuran berat.
jenis jenis katrol
Katrol (sumber: giphy.com)
Pada katrol, kita juga bisa menghitung keuntungan mekanisnya nih, yaitu dengan cara berikut ini! 
jenis-jenis katrol
 
Ternyata, katrol dibagi menjadi beberapa jenis, Squad. Pembagian ini didasarkan pada prinsip kerja katrol tersebut. Hmm, kira-kira apa saja ya jenis-jenis katrol itu? Daripada kamu penasaran, langsung saja yuk kita simak!
 
IPA VIII - Katrol-06
1. Katrol Tetap
Jenis jenis katrol tetap
 
Katrol tetap adalah katrol yang porosnya dipasang di suatu tempat yang tetap, sehingga katrol tidak dapat berpindah tempat saat digunakan. Pada katrol tetap, gaya kuasa yang dikeluarkan akan bernilai sama dengan berat bebannya. Hal ini yang menyebabkan keuntungan mekanis katrol tetap bernilai satu. Katrol tetap biasanya sering kamu temukan pada tiang bendera dan sumur timba.
 
jenis-jenis katrolSumur timba (Sumber: Ruangguru)
 2. Katrol Bebas
Jenis jenis katrol bebas
Berlawanan dengan katrol tetap, kalau katrol bebas adalah katrol yang porosnya tidak dipasang di suatu tempat yang tetap, sehingga katrol dapat berpindah tempat atau bergerak bebas saat digunakan. Pada katrol jenis ini, gaya kuasa yang dikeluarkan untuk menarik bebannya bernilai setengah dari berat bebannya. Oleh karena itu, keuntungan mekanis katrol bebas bernilai 2. Katrol bebas biasanya ditemukan pada alat-alat pengangkat peti kemas di pelabuhan.
contoh katrol bebas
Contoh katrol bebas pada alat konstruksi (sumber: freepik.com)
 3. Katrol Majemuk
Jenis jenis katrol majemuk
Kalau katrol yang satu ini, merupakan gabungan dari katrol tetap dan katrol bebas, Squad. Jadi model katrolnya ada dua jenis, katrol yang paling atas adalah katrol tetap dan katrol di bawahnya adalah katrol bebas, keduanya dihubungkan dengan tali seperti pada ilustrasi gambar di atas. Keuntungan mekanis katrol majemuk sama dengan jumlah tali atau jumlah katrol yang digunakan untuk mengangkat benda tersebut. Katrol majemuk sering digunakan dalam bidang industri, yaitu membantu untuk mengangkat alat-alat yang berat.
contoh katrol majemuk
 Contoh katrol majemuk pada alat konstruksi (sumber: freepik.com)
Wah, ternyata jenis katrol itu banyak, ya! Tidak hanya seperti yang kamu lihat pada tiang bendera atau sumur timba saja. Kamu tahu nggak, kalau pada dasarnya, tujuan dari pesawat sederhana itu termasuk katrol adalah untuk membantu pekerjaan manusia agar menjadi lebih mudah, lho

Tuas

Pengertian, Rumus, Jenis Tuas

Pengertian, Rumus, Jenis Tuas | Tuas atau pengungkit adalah salah satu contoh pesawat sederhana yang dapat berfungsi untuk memindahkan beban yang berat. Pada tuas terdapat tiga titik penting, yaitu titik kuasa (TK), titik beban (TB), dan titik tumpu (TT). Titik kuasa adalah tempat dimana gaya bekerja. Titik beban adalah titik dimana beban berada. Titik tumpu adalah tempat bertumpunya tuas. Jarak antara titik tumpu ke titik kuasa disebut lengan kuasa (LK), jarak antara titik tumpu ke titik beban disebut lengan beban (LB). Panjang pendeknya lengan kuasa sangat menentukan mudah tidaknya beban terangkat. Semakin panjang lengan kuasa semakin mudah kita melakukan usaha. Prinsip kerja tuas adalah berputar di sekitar satu titik yaitu titik tumpu. 
Pengertian, Rumus, Jenis Tuas
Pengertian, Rumus, Jenis Tuas

Rumus Tuas

Dalam tuas, berlaku rumus berikut ini:
W x Lb = F x Lk
Keterangan:
  • W = Berat beban (N)
  • Lb = Panjang lengan beban (m)
  • F = Gaya kuasa (N)
  • Lk = Panjang lengan kuasa (m)
Sedangkan, untuk keuntungan mekanik tuas dirumuskan:
KM = W / F

Jenis-jenis Tuas

Ada tiga jenis tuas yang dibedakan berdasarkan letak titik kuasa, titik beban, dan titik tumpu. Ketiga jenis tuas itu adalah tuas jenis pertama, tuas jenis kedua, dan tuas jenis ketiga.

Tuas Jenis Pertama

tuas jenis pertama
Contoh Tuas Jenis I (Gunting)
Tuas jenis pertama adalah tuas yang titik tumpunya terletak di antara titik kuasa dan titik beban. Contohnya gunting, linggis, dan jungkat-jungkit.

Tuas Jenis Kedua

tuas jenis kedua
Contoh Tuas Jenis II (Gerobak)
Tuas jenis kedua adalah tuas yang titik bebannya terletak di antara titik tumpu dan titik kuasa. Contohnya; pemotong kertas, gerobak roda satu, dan pemecah kemiri.

Tuas Jenis Ketiga

tuas jenis ketiga
Contoh Tuas Jenis III (Pinset)
Tuas jenis ketiga adalah tuas yang titik kuasanya terletak di antara titik beban dan titik tumpu. Contohnya adalah pinset dan sekop.
Sekian uraian tentang Pengertian, Rumus, Jenis Tuas, semoga bermanfaat. 

Pesawat sederhana

Pesawat sederhana

Loncat ke navigasiLoncat ke pencarian
Tabel dari mekanisme sederhana, diambil dari Chambers' Cyclopedia, 1728.[1]
Pesawat sederhana adalah alat mekanik yang dapat mengubah arah atau besaran dari suatu gaya.[2] Secara umum, alat-alat ini bisa disebut sebagai mekanisme paling sederhana yang memanfaatkan keuntungan mekanik untuk menggandakan gaya.[3] Sebuah pesawat sederhana menggunakan satu gaya kerja untuk bekerja melawan satu gaya beban. Dengan mengabaikan gaya gesek yang timbul, maka kerja yang dilakukan oleh beban besarnya akan sama dengan kerja yang dilakukan pada beban.
Kerja yang timbul adalah hasil gaya dan jarak. Jumlah kerja yang dibutuhkan untuk mencapai sesuatu bersifat konstan, walaupun demikian jumlah gaya yang dibutuhkan untuk mencapai hal ini dapat dikurangi dengan menerapkan gaya yang lebih sedikit terhadap jarak yang lebih jauh. Dengan kata lain, peningkatan jarak akan mengurangi gaya yang dibutuhkan. Rasio antara gaya yang diberikan dengan gaya yang dihasilkan disebut keuntungan mekanik.
Keuntungan mekanik tuas (pengungkit): -w/f = lk/lb untuk mencari w, jika memang belum ditemukan: w=m.g untuk mencari f, jika belum ditemukan: w*lb = f*lk
keuntungan mekanik bidang miring: -s/h
keuntungan mekanik katrol: -tetap: lk/lb = 1 -bergerak: lk(2lb)/lb = 2 -majemuk: jumlah tali
untuk roda bergigi, tidak ada keuntungan mekanik, yang ada adalah efisiensi: energi keluaran bermanfaat / energi masukan total
Secara tradisional, pesawat sederhana terdiri dari:
Pesawat sederhana merupakan dasar dari semua mesin-mesin lain yang lebih kompleks.[3][4][5] Sebagai contoh, pada mekanisme sebuah sepeda terdapat roda, pengungkit, serta katrol. Keuntungan mekanik yang didapat oleh pengendaranya merupakan gabungan dari semua pesawat sederhana yang ada dalam sepeda tersebut.


Usaha

 Usaha

Dalam kehidupan sehari-hari, pengertian usaha identik dengan kemampuan untuk meraih sesuatu. Misalnya, usaha untuk bisa naik kelas atau usaha untuk mendapatkan nilai yang besar. Namun, apakah pengertian usaha menurut ilmu Fisika? Untuk mengetahuinya lakukanlah kegiatan berikut.
Tujuan
Mengidentifikasi pengertian usaha
Alat dan bahan
Sebuah buku dan meja tulis
Cara kerja
Ambillah sebuah buku temanmu, lalu letakkan di atas mejamu.
Doronglah meja tulismu sampai berpindah tempat.
Doronglah dinding kelasmu sekuat tenaga.
Pertanyaan
Besaran apakah yang memengaruhi besaran usaha?
Bagaimanakah besaran-besaran itu memengaruhi usaha menurut perkiraanmu?
Berdasarkan kegiatan diatas, dapat diketahui bahwa ketika benda didorong ada yang berpindah tempat dan ada pula yang tetap di tempatnya. Ketika kamu mendorong atau menarik suatu benda, berarti kamu telah memberikan gaya pada benda tersebut. Oleh karena itu, usaha sangat dipengaruhi oleh dorongan atau tarikan (gaya). Menurut informasi tersebut, jika setelah didorong benda itu tidak berpindah, gayamu tidak melakukan usaha. Dengan kata lain, usaha juga dipengaruhi oleh perpindahan. Dengan demikian, dapat disimpulkan bahwa usaha dihasilkan oleh gaya yang dikerjakan pada suatu benda sehingga benda itu berpindah tempat.

Bagaimanakah ketika kamu mendorong dinding kelasmu? Apakah dinding berpindah tempat? Walaupun kamu telah sekuat tenaga mendorongnya, tetapi dinding tetap ditempatnya. Oleh sebab itu, menurut Fisika gayamu dikatakan tidak melakukan usaha.

Apabila gaya disimbolkan dengan F dan perpindahan dengan s, secara matematis usaha dituliskan dalam persamaan berikut. 
W = F s 
dengan: W = usaha (J) 
F = gaya (N) 
s = perpindahan (m) 
Persamaan berlaku untuk gaya yang arahnya sama dengan perpindahan, seperti terlihat pada Gambar berikut.

Arah gaya yang diberikan pada balok searah dengan perpindahannya
Arah gaya yang diberikan pada balok searah dengan perpindahannya

Usaha memiliki satuan yang sama dengan energi, yaitu joule. Dengan ketentuan bahwa 1 joule sama dengan besar usaha yang dilakukan oleh gaya sebesar 1 N dengan perpindahan 1 m.

Kamu sudah mengetahui usaha yang dilakukan untuk memindahkan sebuah benda ke arah horisontal, tetapi bagaimanakah besarnya usaha yang dilakukan untuk memindahkan sebuah benda ke arah vertikal? Memindahkan benda secara vertikal memerlukan gaya minimal untuk mengatasi gaya gravitasi bumi yang besarnya sama dengan berat suatu benda. Secara matematis gaya tersebut dapat ditulis sebagai berikut.
F = m g 
Karena perpindahan benda ke arah vertikal sama dengan ketinggian benda (h), dengan memasukkan Persamaan yang satu ke dalam Persamaan yang lain diperoleh usaha yang dilakukan terhadap benda tersebut sebagai berikut.
W = F s
W = m g h 
dengan: W = usaha (J)
m = massa (kg)
g = percepatan gravitasi (N/kg)
h = perpindahan atau ketinggian (m)